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LETTER TO THE EDITOR

A note on graded Yang-Baxter solutions as braid-monoid
invariants

M J Martins and P B Ramos

Universidade Federal de S3o Carlos, Departamento de Fisica, CP 676, 13560 S3o Carlos,
Brazil

Received 17 June 1994

Abstract. We construct two Osp(n|2m) solutions of the graded Yang-Baxter equation by using
the algebraic braid-monoid approach, The factorizable S-matrix interpretation of these solutions
is also discussed.

It is known that the Yang—Baxter equations play a central role in the study of two-dimension
exactly solvable models [1-3]. One possible gereralization of the Yang—Baxter relation is
to consider integrable systems containing both bosonic and fermionic degrees of freedom.
In this case the elementary generator A; acts on a Z; graded vector space and its bosonic
and fermionic components are distinguished by the parity p(A;) = p{i) =0, 1, respectively
[2]. Considering a graded space V@™ consisted of n bosons and m fermions, the graded
Yang-Baxter equation for the R-matrix amplitude is written as {2]
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where p(i} =0fori =1,2,...,.m; p(iy=1fori=n+1,n+2,...,n+m It has also
been assumed that the non-null elements Rf,:g are commuting variables, namely p(Rgzﬁ) =0
[2]. The simplest solution of the graded Yang—Baxter equation (1) was exhibited by Kulish
and Sklyanin [2] as the generalization of Yang’s S-matrix [4], and is given by

u n
Ru,n) = ——1
@, ) u+n U+
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where [ is the identity and P& is the graded permutation operator on the tensor vector space
Volm @ yoim with elements (PESF = (=1)P@POs, 18, .. Variable u is the spectral
parameter while 7 is a constant connected to the graded classical solution [2].

In general, solutions of the graded Yang—Baxter relation have been investigated
as invariants under the superalgebras S!(n|m) and Osp(n|2m) [5,6,7]. For instance,
trigonometric solutions have been constructed by Bazhanov and Shadrikov 5] by
investigating the classical analogue of the graded Yang-Baxter equations. The special case
of the universal Osp(2|1) R-matrix was discussed in [6,7] in the context of the quantum
super-group. Nowadays, however, it has been recognized that the Yang—Baxter solutions
are deeply connected to a number of other algebraic structures, e.g,, the braid-monoid [8],
the Temperley—Lieb (TL) [9] algebras and more recently the multi-colour versions of these
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structures [10]. In this sense one would expect that sirnilar relations would also appear for
the graded case. In fact, Deguchi and Akutsu [11] have shown that the fundamental S!{(njm)
graded solution can be obtained through the generators of the Hecke algebra. Motivated
by this fact, the purpose of this note is to discuss two Osp(n[2m) solutions generated by
the braid-monoid invariants. We also comment on the crossing symmetry praperty which
is fundamental in the context of factorizable S-matrices interpretation of our solutions,

We start our discussion by constructing an Osp(n|2m) TL invariant operator. In order to
build-up such an operator we recall that an Gsp{ni2m) invariant A is a (n+2m)X (n +2m)
matrix satisfying the property (see, e.g., [12])

Atasa =0 3

where the symbol A® denotes the supertranspose operation in the matrix A and the matrix
& is given by

Lixn Cnxom

o= o ( Omxm Tnxm ) (4)

ImXn _ O
mXn mXm

where Ly.(O.x;) 1s the aXa identity (null) matrix. Remarkably enough, we notice that
the matrix o present in Osp(n|2m) invariance plays a fundamental role on the construction
of our TL invariant. Indeed, if we define the following generator E; as

, "
E, = Z Capliiyeh. @ em‘ (5)
abed

one can check that the Temperley—Lieb relations are satisfied, namely
EEn E =E; E} = (n —~2m)E, (£, Ejl=0 for li~ji22 ©)
where the matrix elements of ef!b acting on the ith ‘site’ are (ef]b)cd = 84.8p -

The next step is to show how one can graded ‘Baxterize’ the explicit representation (5)
for the monoid E;. However, from the discussions of {2,11] we notice that a null-parity
graded R-matrix satisfying (1) can be obtained by the relation

Ri(n) = PEX;(u) Q)
where X;(u) is a null-parity usual Yang-Baxter operator satisfying the relation

X)X (o + )X (0) = X (1 (0 X (00 + )Xy () (8)

Finally, taking into account the previous experience [13, 14] in the Baxterization of a
TL generator we find the following solution

Ri(ut 77) = -P;'g + f(‘u: W)Er ' (9)
where we have used the fact that p(E;} = 0 and the important identity

PPE; = E;PE=E, (10)
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and function f{u, i) is given by

sinh(iu/n) ) _
m if 2cosh{y) =(n—-2m) s 2
flu,m) = in—u ifn—=2m==2 an
sin{u/ 7} . _
m if 2cos{y)=|n—2m| < 2.

We would like to stress that one advantage of this approach is that we are able to
generate a new trigonometric/rational Osp(n|2m) solution which has no graded classical
analopgue, and apparently for this reason has been missed in the literature {5], From the
point of view of quantum spin chains the operator E; generatizes previous efforts in finding
isotropic high-spins [15, 16] TL invatiants. The fact that the TL parameter (n — 2m) may
assume negative values means that an appropriate deformation of isotropic high-spin chains
[17. 18] shall indeed possess a hidden Osp(r|2m) symmetry. For instance, we have checked
that the simplest case of Osp(1|2} model comesponds to the deformed point ¢ = { (in the
notation of [17]) of the spin-1 TL chain.

A second important feature of this approach is as follows. First of all, identity (10)
strongly suggests that the operators P,-g and E; may be generators of a2 more general algebraic
structure, namely the braid-monoid algebra. Moreover, taking into account the remarks of
[8], one can verify that a crossing symmetric S-matrix interpretation of (9) will lead us
in the high-energy limit to the braid operator PF and at the crossing point = ny to the
monoid operator E;. More precisely, one can show that besides equation (10) we have the
following exira relations

P&\ PPEiz1 = E;PE (P} = E\Einy (12)
Ei P E; = E; (13)
and the braid-inverse properties ’
PR PPPYy = PPPLPY (14)
PERf =1L (15)

In fact we can show that these sets of relations between the operators P# and E;§ form
a degenerated representation of a reduced} Birman-Wenzel algebra (see e.g. [8,20]). It
is also possible to show that the other relations between the operators P? and E; closing
the reduced Birman—Wenze!l algebra are just a consequence of the identities {12, 13, 15).
Hence, this observation suggests that another graded Baxterization can be implemented in
the sense of that found by Jones [19]. Therefore, proceeding as in the TL case and taking
as a guess the Jones [19] parametrization of the degenerated point of the Birman-Wenzel
algebra [20] we find that

Riu, n) = —:-1.- + PF a (16)

g u+n(n—2m—2)/2E"

1 At this point we remind the reader that mote general forms of such monoid can be chosen. For instance, we
mention the monoid E; = ;s pper el ® €i3! where a = diag[A,xn, antdiag(Buxm, ~Bmxm)] if A and B
are symmetric and invertible matrices.

I This occurs at the singular point of the parameters entering the Birman—Wenzel algebra such that the eigenvalues
become degenerated.
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satisfies the graded Yang-Baxter equation (1). A simple way to verify this last result is
by checking that PfR,-(u, n) satisfies the usual Yang—Baxter equation () if one uses the
relations (6, 10, 12-15). We recall, however, that this solution corresponds to the rational
limit of a trigonometric Osp{n|2m) solution already found by Bazhanov and Shadrikov
[5]. This is due to the fact that (16) admits its graded classical analogue around the point
/=20 ’

To conclude we would like to make some remarks concerning the interpretation of the
graded solutions (9, 16) as factorizable S-matrices. In order to interpret R;{u, n) as a §-
matrix one has to impose ¢rossing and unitarity conditions. Although the unitarity condition
remains as usual, the crossing property in the graded case now has to take into account the
signs coming from the interchange of two fermions. This is accomptished by taking the
supertranspose instead of the traditional transpose operation, and the crossing symmetry
property becomes

5i(8) = C RIS (im —)(C ® D™ (17)

where @ is the relativistic rapidity and the supertranspose is taken only on the first space
of 5;(@). C is the charge matrix, which for the theories (9, 16) is C = a. After some
calculations, the corresponding S-matrix associated to the solution (9) is given by

5:(8) = £(8)sin (” — ig) RG8. )  |n—2m|=2cos(z/n) (18)
' , -1
FOY=flamr—6)  fO)f(=0) = [sin (” ;‘9) sin (” : “9)] (19)

and for solution (16) we have

. 2 92
Si@) =R, (19, n= m) f@)f(—0)= T (20)

The main feature of these S-matrices is that they have a formally remarkable resemblance
to those describing the physics of O(N) invariant systems {21,22]. Indeed, at m = 0
the O(n) symmetry is automatically restored in the solutions (18-20). The physical
interpretation of these solutions is as follows. The first solution can be considered as a
regularized version of that proposed by Zamolodchikov [21] to describe the physics of a
self-avoiding polymer. In our case, however, we can choose n, m 5% 0 such that the self-
avoiding limit # = 0 is taken in an unambiguous way. The second solution (20) generalizes
the S-matrices corresponding to the O (N) nonlinear sigma model [22]. An important feature
is that now the simplest case of Osp(1|2) has its pole on the physical strip at 8 = i2x/3
{(in function f(8)) which is not present in its equivalent bosenic version, namely the O(3)
nonlinear sigma case. We believe that this is a very inferesting solution and we hope to
discuss its other features, e.g., the associated quantum spin chain and the quantum field
theory, in a further publication.
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