
A note on graded Yang-Baxter solutions as braid-monoid invariants

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 L703

(http://iopscience.iop.org/0305-4470/27/18/010)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 22:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 27 (1994) L70?-L707. Printed in the UK 

LETTER TO THE EDITOR 

A note on graded Yang-Baxter solutions as braid-monoid 
invariants 

M J Martins and P B Ramos 
Univemidade Federal de S2o Carlos, Departamento de Ffsica, CP 676, 13560 Sa Carlos, 
Brazil 

Received 17 June 1994 

AbshncL We constmuct two Osp(nl2m) solutions of the gnded Yang-Baxter equation by using 
the algebnic braid-monoid approach. The factorizable S-matrix interwetation of these solutions 
is aIso discussed. 

It is known that the Yang-Baxter equations play a central role in the study of two-dimension 
exactly solvable models 11-31, One possible generalization of the Yang-Baxter relation is 
to consider integrable systems containing both bosonic and fermionic degrees of freedom. 
In this case the elementary generator Ai acts on a 2, graded vector space and its bosonic 
and fermionic components are distinguished by the parity p ( A i )  p ( i )  = 0, 1, respectively 
[2]. Considering a graded space Vblm) consisted of n bosons and m fermions, the graded 
Yang-Baxter equation for the R-matrix amplitude is written as 121 

Ral,a2 U.Y ( U ) R2' (U + u)R?F (u)(-l)P(y)lp(~~)tP(~)l 

= ~ y . 8  am> ( u ) ~ U . 6 1 ( u  a1.8 + U ) R b l . b 2 ( U ) ( - ] ) P ( Y ) l P ( 6 1 ) t P ( J ) I  %Y (1) 

where p ( i )  = 0 for i = 1.2, . . . , n; p ( i )  = 1 for i = n + 1, n + 2, . . . , n + m. It has also 
been assumed that the non-null elements R$ are commuting variables, namely p(R:$) = 0 
[2]. The simplest solution of the graded Yang-Baxter equation (1) was exhibited by Kubh 
and Sklyanin 121 as the generalization of Yang's S-matrix [4], and is given by 

where Z is the identity and Pg is the graded permutation operator on the tensor vector space 
V("lm) @ V("lm) with elements (Pg):pb = (-l)P(')P(6)g,,ds*,e. Variable U is the spectral 
parameter while r~ is a constant connected to the graded classical solution [2]. 

In general, solutions of the graded Yang-Baxter relation have been investigated 
as invariants under the superalgebras Sl(nlm) and Osp(nl2m) 15.6.71. For instance, 
trigonometric solutions have been constructed by Bazhanov and Shadrikov 151 by 
investigating the classical analogue of the graded Yang-Baxter equations. The special case 
of the universal Osp(211) R-matrix was discussed in [6,7] in the context of the quantum 
super-group. Nowadays, however, it has been recognized that the Yang-Baxter solutions 
are deeply connected to a number of other algebraic structures, e.g., the braid-monoid [8], 
the Temperley-Lieb (TL) [9] algebras and more recently the multi-colour versions of these 
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structures [IO]. In this sense one would expect that similar relations would also appear for 
the graded case. In fact, Deguchi and Akutsu [I  11 have shown that the fundamental Sl(nlm) 
graded solution can be obtained through the generators of the Hecke algebra. Motivated 
by this fact, the purpose of this note is to discuss two osp(nj2m) solutions generated by 
the braid-monoid invariants. We also comment on the crossing symmehy property which 
is fundamental in the context of factorizable 3-matrices interpretation of our solutions. 

We start our discussion by constructing an Osp(nl2m) n, invariant operator. In order to 
build-up such an operator we recall that an Osp(nl2m) invariant A is a (n+2m)X(n+2m) 
matrix satisfying the property (see, e.g., [12])  

A f 01A"'cu-' = 0 (3) 

where the symbol A" denotes the supertranspose operation in the matrix A and the matrix 
01 is given by 

where Zo,ya(On,yo) is the aXu identity (null) matrix. Remarkably enough, we notice that 
the matrix a present in Osp(nl2m) invariance plays a fundamental role on the construction 
of our n invariant. Indeed, if we define the following generator Et as 

one can check that the Temperley-Lieb relations are satisfied, namely 

EiEi*lEi = E ;  E: = (n - 2m)Ei [ E l ,  Ejl = 0 for li - j l  > 2 (6) 

where the matrix elements of e:b acting on the ith 'site' are (eib).d = &,&,d. 
The next step is to show how one can graded 'Baxterize' the explicit representation (5) 

for the monoid E i .  However, from the discussions of [2.11] we notice that a null-parity 
graded R-matrix satisfying (1)  can be obtained by the relation 

Ri(u) = PFXi(u) (7 ) 

where Xj(u) is a null-purify usual Yang-Baxter operator satisfying the relation 

Xi(u)Xi+I(u + v)Xi(u) = Xi+l(v)Xi(u + v)X;+I(U).  (s) 

Finally, taking into account the previous experience 113,141 in the Baxterization of a 
n generator we find the following solution 

&(U, I I )  = Pi" + f ( u ,  II)Ei (9) 

where we have used the fact that p(Ei )  = 0 and the important identity 

PiSE; = E f e g  = Et (10) 
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and function f (U, 11) is given by 

sinh(u/q) 
if 2cosh(y) = (n - 2m) 5 f2 

if n - 2m = f2 

*sinh(y - u/q) 

(11) 

We would like to stress that one advantage of this approach is that we are able to 
generate a new higonometrichational Osp(nl2m) solution which has no graded classical 
analogue, and apparently for this reason has been missed in the literature [SI. From the 
point of view of quantum spin chains the operator Ei generalizes previous efforts in finding 
isotropic high-spins [15,16] n invariants. The fact that the 'i% parameter (n - 2m) may 
assume negative values means that an appropriate deformation of isotropic high-spin chains 
[ 17.181 shall indeed possess a hidden Osp(nl2m) symmetry. For instance, we have checked 
that the simplest case of Osp(112) model corresponds to the deformed point q = i (in the 
notation of [17]) of the spin-1 n chain. 

A second important feature of this approach is as follows. First of all, identity (IO) 
strongly suggests that the operators Pis and Ei may be generators of a more general algebraic 
structure, namely the braid-monoid algebra. Moreover, taking into account the remarks of 
181, one can verify that a crossing symmetric S-matrix interpretation of (9) will lead us 
in the high-energy limit to the braid operator P;" and at the crossing point U = 11 y to the 
monoid operator E, .  More precisely, one can show that besides equation (IO) we have the 
following extra relations 

Pg ,*I P6&g , = EiP,P,lPf = EiEjr-1 (12) 

Ej Pi*, Ei = Ej (13 
and the braid-inverse properties 

P&lP;"P&I = pigpdip: (14) 

Pf Pf = I < .  (1.5) 

In fact we can show that these sets of relations between the operators P;" and Ei t  form 
a degenerated representation of a reducedf Birman-Wenzel algebra (see e.g. [S, 201). It 
is also possible to show that the other relations between the operators P;" and Ej closing 
the reduced Birman-Wenzel algebra are just a consequence of the identities (12, 13, 15). 
Hence, this observation suggests that another graded Baxterization can be implemented in 
the sense of that found by Jones [19]. Therefore, proceeding as in the TL case and taking 
as a guess the Jones [I91 parametrization of the degenerated point of the Birman-Wenzel 
algebra [20] we find that 

1 At this point we remind the read% Lhat more general f o m  of such monoid can be chosen. Por instance, we 
mention the monoid Ei = a&ad - I  e, i @ @ I  cd where (I = diag[A.x.. antdiag(B,x,, -B,,,x.)l if A and B 
are symmehic and invertible matrices. 
t This occurs at the singular p i n t  of the parJmetem entering Ihe Birman-Wenzel algebra such that the eigenvalues 
beeom degenerated. 
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satisfies the graded Yang-Baxter equation (1). A simple way to verify this last result is 
by checking that P:Ri(u, q )  satisfies the usual Yang-Baxter equation (8) if one uses the 
relations (6, 10, 12-15). We recall, however, that this solution corresponds to the rational 
limit of a trigonometric Osp(n12m) solution already found by Bazhanov and Shadrikov 
[5 ] .  This is due to the fact that (16) admits its graded classical analogue around the point 
I/q 2 0. 

To conclude we would like to make some remarks concerning the interpretation of the 
graded solutions (9, 16) as factorizable S-matrices. In order to interpret Ri(u, q) as a S- 
matrix one has to impose crossing and unitarity conditions. Although the unitarity condition 
remains as usual, the crossing property in the graded case now has to take into account the 
signs coming from the interchange of two fermions. This is accomplished by taking the 
supemanspose instead of the traditional transpose operation, and the crossing symmetry 
property becomes 

&(e) = c @ rs?((in - e)(c @ zp (17) 

where 0 is the relativistic rapidity and the supertranspose is taken only on the first space 
of &(e). C is the charge matrix, which for the theories (9, 16) is C = 01. After some 
calculations, the corresponding S-matrix associated to the solution (9) is given by 

Si(@) = f(0)sin (y) R(iB, q) In - 2ml = 2cos(z/q) 

and for solution (16) we have 

The main feature of these S-matrices is that they have a formally remarkable resemblance 
to those describing the physics of O ( N )  invariant system [21,22]. Indeed, at m = 0 
the O(n) symmetrj is automatically restored in the solutions (18-20). The physical 
interpretation of these solutions is as follows. The first solution can be considered as a 
regularized version of that proposed by Zamolodchikov [21] to describe the physics of a 
self-avoiding polymer. In our case, however, we can choose n, m # 0 such that the self- 
avoiding limit q = 0 is taken in an unambiguous way. The second solution (20) generalizes 
the S-matrices corresponding to the O ( N )  nonlinear sigma model [22]. An important feature 
is that now the simplest case of Osp(112) has its pole on the physical strip at 0 = i2n/3 
(in function f ( 0 ) )  which is not present in its equivalent bosonic version, namely the O(3) 
nonlinear sigma case. We believe that this is a very interesting solution and we hope to 
discuss its other features, e.g., the associated quantum spin chain and the quantum field 
theory, in a further publication. 

It is a pleasure to thank F C Alcaraz for discussions and help with numerical checks. This 
work is supported by CNPq and Capes (Brazilian agencies). 
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